
環境経営推進体制

クボタグループの環境経営は、環境マネジメントシステムに基づき、取締役会を最高意思決定機関とした組織体制により 推進しています。

推進体制

クボタグループ環境マネジメントシステム

※KEDES:環境情報管理システム

環境関連教育

2011年度もさまざまな環境関連教育を実施しました。クボタ環境管理部が主催するものに加えて、各拠点やグループ会社でも独自に環境教育を実施しています。また、外部団体の環境教育への協力も行っています。

2011年度 環境関連教育実績 (社内教育はクボタ環境管理部主催または講師派遣のみ記載)

分類	教育・研修	嗲・会議名 など	回数	受講人数	概要
	総合講座〈1〉(新力	、社員 他)	2	133	地球環境問題と企業に求められる対応
	CSR研修(入社9年	E目クリエイト職対象)	1	34	地球環境問題・クボタの環境管理
階層別教育	上級職昇級者研修		2	126	地球環境問題・クボタの環境管理
	新任職長研修		1	18	クボタの環境管理・現場の環境管理
	新任作業長研修		2	47	クボタの環境管理・現場の環境管理
	環境管理基礎		1	8	法規制、環境リスク、環境保全などの基礎教育
	環境管理技術	公害防止技術	1	14	公害防止関連法、公害防止技術理論
		省エネ技術	1	17	省エネ関連法、省エネ技術と実践事例
吉服	廃棄物管理		2	26	廃棄物処理法、契約・マニフェスト演習など
専門教育	ISO14001環境監	查員養成	2	29	ISO14001規格、環境法、事例研究
	堺製造所 環境管	理教育	1	20	ISO14001内部監査員のブラッシュアップ
	(株)クボタ建機ジャル	パン 環境管理教育	2	47	環境リスク管理体制の運営強化
	(株)クボタ建機ジャル	パン 環境管理教育	1	8	環境情報管理システムの運用
	㈱廣野鐵工所		1	30	ISO14001環境監查員養成教育
外部団体の教育への協力	制地球環境センタ 大都市地域環境政 環境マネージメン	策•	1	8	堺製造所の環境対策への取り組み
3×13	財省エネルギーセ国際エネルギー使「中国 省エネルギ	用合理化対策事業	1	37	枚方製造所のエネルギー管理状況・省エネ事例、 関連施設見学

環境リスクマネジメント

事業活動における環境リスクを特定し、リスクの極小化に努めています。万一、環境事故を発生させた場合でも、周辺環境への 影響を最小限に抑えるため、各拠点でリスク毎に定めた対応手順に基づいた訓練を定期的に実施しています。

異常時·緊急時訓練事例(SIAM KUBOTA Metal Technology Co.,Ltd.)

48-① KUBOTA REPORT 2012 48-②

ISO14001認証取得状況 (2012年3月31日現在)

クボタグループでは、2006年度末までにすべての国内生産拠点でISO14001認証を取得しました。 現在は、海外生産拠点におけるISO14001認証取得の拡大に向けた活動を展開しています。

クボタ 国内拠点・事業部・事業ユニット

No	拠点・事業部 等	認証に含まれる組織・関連会社	主要製品・サービス 等	審査登録機関	認証取得年月日
1	阪神工場	丸島分工場	ダクタイル鉄管・異形管・ 圧延用ロール・チタン酸カリウム	LRQA	1999年3月5日
2	京葉工場	流通加工センター	ダクタイル鉄管・異形管・スパイラル鋼管	LRQA	1998年7月16日
3	枚方製造所		バルブ・鋳鋼・セラミック関連新素材・建設機械	LRQA	1999年9月17日
4	堺製造所·堺臨海工場		エンジン・農業機械・小型建設機械等	LRQA	2000年3月10日
5	筑波工場	東日本総合部品センター クボタ機械サービス㈱KS筑波研修センター 関東クボタ精機㈱	エンジン・農業機械等	LRQA	1997年11月28日
6	宇都宮工場	クボタ機械サービス㈱KS宇都宮研修センター	田植機・コンバイン	LRQA	2000年12月8日
7	竜ヶ崎工場	クボタベンディングサービス㈱竜ヶ崎工場 ㈱クボタ関東ベンダーセンター竜ヶ崎事業所	自動販売機	DNV	1998年11月13日
8	滋賀工場		FRP製品	JUSE	2000年5月18日
9	久宝寺事業センター	クボタ環境サービス(株) クボタメンブレン(株) (株)クボタ計装	計量機器・計量システム・CADシステム・ 精米関連製品・廃棄物破砕機器・ 液中膜ユニット・金型温調機等	DNV	1999年3月19日
10	恩加島事業センター		産業用鋳鉄製品・排水集合管・その他鋳物製品	JICQA	1999年12月22日
11	上下水エンジニアリング 事業ユニット	新淀川環境プラントセンター	下水処理·汚泥処理·浄水処理· 用排水処理施設	LRQA	2000年7月14日
12	ポンプ事業部	クボタ機工(株)	下水処理・浄水処理施設、ポンプ・ポンプ設備	LRQA	2000年7月14日
13	膜システム事業ユニット		ろ過膜ユニット	LRQA	2000年7月14日

グループ会社 国内拠点

No	会社名	認証に含まれる組織	主要製品・サービス 等	審査登録機関	認証取得年月日
1	クボタシーアイ(株)	栃木工場 堺工場 小田原工場 ㈱九州クボタ化成	合成管·継手	JUSE	2011年2月22日
2	日本プラスチック工業(株)	本社工場・美濃工場	合成管・プラスチックシート等	JSA	2000年10月27日
3	㈱クボタ工建		土木構造物・建築物の設計・施工	JQA	2000年12月22日
4	クボタ環境サービス(株)		上水・下水・埋立て処分・し尿・ ごみのプラント施設等 環境関連施設の施工・維持管理	MSA	2002年11月20日
5	クボタ空調(株)	栃木工場	セントラル式空調機器	JQA	2004年8月27日
6	㈱クボタパイプテック		各種パイプラインの施工及び施工管理	JCQA	2005年1月24日
7	クボタ精機(株)		油圧バルブ・油圧シリンダ・トランスミッション・ 油圧ポンプ・油圧モーター等	LRQA	2007年3月17日

グループ会社 海外拠点

No	会社名	主要製品	審査登録機関	認証取得年月日
1	SIAM KUBOTA Corporation Co.,Ltd.[Navanakorn] (タイ)	小型ディーゼルエンジン・農業機械	MASCI	2003年2月28日
2	PT. Kubota Indonesia (インドネシア)	ディーゼルエンジン・農業機械	LRQA	2006年2月10日
3	Kubota Metal Corporation (カナダ)	鋳鋼製品	SGS	2006年6月15日
4	P.T.Metec Semarang (インドネシア)	白動販売機	TUV	2011年3月16日

LRQA: ロイド・レジスター・クオリティ・アシュアランス・リミテッド JUSE: ㈱日本科学技術連盟 JICQA: 日本検査キューエイ(株)

MSA:(株)マネジメントシステム評価センター

SGS: SGS Systems & Services Certification Canada Inc.(カナダ) **TUV**: TÜV Rheinland Cert GmbH (ドイツ)

JCQA: 日本化学キューエイ㈱ DNV: デット・ノルスケ・ベリタス・エーエス

JSA: 劇日本規格協会

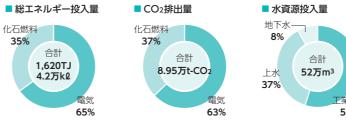
JQA: 劇日本品質保証機構

MASCI: Management System Certification Institute(タイ)

主要な環境指標の推移

過去5年間の推移 🔎

環境負荷の主要な指標について、過去5年間の推移は以下のとおりです。


集計対象範囲は、特に注記のない限り、クボタ本体および国内、海外の連結子会社です。

	PUT 水資源投入量 PRTR法対象物質取扱量 化学物質取扱量*2 CO2排出量 SOX排出量*3 NOX排出量*3 パン排出量*3 PRTR法対象物質排出量 化学物質排出量*2 (公共用水域) 排水量*5 COD排出量*4 窒素排出量*4 りん排出量*4	三 拉拉福	当位	単位 報告対象期間										
	1		十四	2007年度	2008年度	2009年度	2010年度	2011年度						
		総エネルギー投入量(輸送燃料除く)	TJ	9,620	9,840	8,490	8,500	8,890						
INPUT		水資源投入量	万m³	537	509	466	423	445						
INFOI		PRTR法対象物質取扱量*1	t	8,751	6,621	5,507	5,277	5,321						
	化学物質取扱量*2 CO2排出量 SOX排出量*3 NOX排出量*3 ばいじん排出量*3		t	_	_	_	2,667	4,488						
		CO2排出量	万t-CO2	53.6	57.5	47.8	44.5	46.8						
		SOx排出量※3	t	8.6	3.9	3.8	5.2	2.9						
大気排出	十二批山	NOx排出量※3	t	80.6	60.3	49.5	66.1	61.7						
	人乳排伍	ばいじん排出量※3	t	3.7	5.6	3.8	5.5	6.4						
		PRTR法対象物質排出量*1	t	580	574	475	389	384						
		化学物質排出量※2	t	_	_	_	81	119						
		(2.1.1.1.2.1.1)												
		排水量※5	万m³	456	448	386	378	382						
		COD排出量※4	t	15.5	11.7	15.4	10.8	11.9						
		窒素排出量※4	t	14.3	13.9	10.2	9.5	10.2						
	水系排出	りん排出量※4	t	0.45	0.36	0.25	0.35	0.29						
		PRTR法対象物質排出量*1	kg	166	40	33	35	40						
		(下水道)												
		排水量**5	万m³	73	90	99	94	101						
		PRTR法対象物質排出量*1	kg	115	48	20	21	20						
	廃棄物等排出量	千t	159	149	121	128	149							
		廃棄物排出量	千t	93	94	74	70	78						
	廃棄物	廃棄物埋立量	千t	7.0	10.2	3.6	4.3	4.1						
		廃棄物埋立比率※6	%	2.4	6.0	3.2	3.4	2.7						

※1 国内拠点データです。 ※2 海外拠点データです。(第三者保証対象外) ※3 2010年度以降は海外拠点データを含んでいます。

※4 2008年度までは国内における総量規制対象拠点からの総排出量です。2009・2010年度は、海外拠点データを含んでいます。(りんは 2010 年度のみ。)
2011年度より、国内外の公共用水域に排水している拠点のうち、総量規制対象拠点からの排出量を対象としました。(この結果、2011年度は対象となる海外拠点はありません。)
※5 2008年度以降は海外拠点データを含んでいます。 ※6 2009年度以降は海外拠点データを含んでいます。

海外拠点の2011年度環境データ(抜粋)

環境効率指標

指標の見方

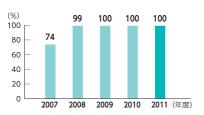
指標の向上は、CO2など環境負荷の単位当たり売上高が増加し、 環境効率が上がったことを示します。

環境効率は、昨年度に比べて向上しました。

CO2排出量・PRTR法対象物質排出移動量を環境負荷とした

・CO2の環境効率指標=連結売上高(百万円)÷CO2排出量(t-CO2) (グループ全体)

・廃棄物の環境効率指標=連結売上高(百万円)÷廃棄物排出量(百kg) (グループ全体)

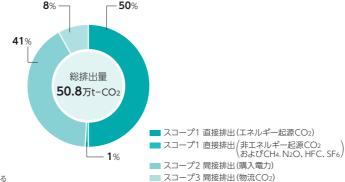

・化学物質の環境効率指標=連結売上高(百万円)÷PRTR法対象物質排出移動量(kg) (国内グループ)

KUBOTA REPORT 2012 48-@ 48-3 KUBOTA REPORT 2012

環境経営対象グループ会社

2009年度より国内外の全連結子会社を環境経営の範囲に取り入れています。

対象グループ会社比率



CO2関連データ(2011年度実績)

冊子P43「地球温暖化の防止」の補足情報です。

総エネルギー投入量 🔎

スコープ*別CO2排出量

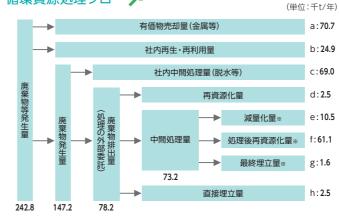
※熱量換算係数は9.97MJ/kWh(エネルギー使用の合理化に関する 法律施行規則(2009.3.31改訂))の係数を使用。

貨物輸送量の推移

グリーン購入

クボタグループでは、事務用品(紙類、文具類等)について グリーン購入を推進しています。

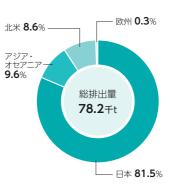
2011年度の購入金額比率は73.7%で、目標の75%には 達しませんでした。今後は、目標の達成に向けて、各拠点へ の指導、啓発活動を強化していきます。


※GHGプロトコルにより定義された排出源の範囲

資源循環関連データ(2011年度実績)

冊子P44「循環型社会の形成」の補足情報です。

循環資源処理フロー 🔎



※ 社外中間処理に伴う減量化量、処理後再資源化量、最終埋立量は委託先での調査結果。

廃棄物排出量の内訳 🔎



地域別廃棄物排出量

建設廃棄物再資源化率の推移(国内拠点データ)

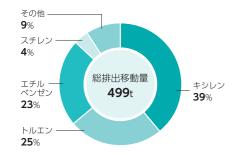
2011年度は、大規模工事の受注が多かったため建設廃棄物等排出量が増加しました。 また、リサイクル可能な処理委託先を選定することにより、再資源化率が向上しました。

※ 再資源化率=(有価物売却量+再資源化量+減量化量(熱回収))÷建設廃棄物排出量(有価物売却量含む)×100(%)

48-⑤ KUBOTA REPORT 2012 KUBOTA REPORT 2012 48-6

PRTR集計結果·地下水管理状況

冊子P45「化学物質の管理」の補足情報です。


2011年度 PRTR集計結果 (拠点ごとの年間取扱量1トン(特定第1種は0.5トン)以上の第1種指定化学物質について集計)

単位:kg/年(ダイオキシン類:mg-TEQ/年)

政令	4L EE A-7L		排出	出量		移動	加量
番号	物質名称	大気	公共用水域	土壌	自社埋立	下水道	場外移動
1	亜鉛の水溶性化合物	0.0	40	0.0	0.0	20	1,303
53	エチルベンゼン	92,035	0.0	0.0	0.0	0.0	24,546
71	塩化第二鉄	0.0	0.0	0.0	0.0	0.0	0.0
80	キシレン	153,907	0.0	0.0	0.0	0.0	39,141
87	クロム及び三価クロム化合物	0.0	0.0	0.0	0.0	0.0	10,796
132	コバルト及びその化合物	0.0	0.0	0.0	0.0	0.0	3.0
188	N,N-ジシクロヘキシルアミン	0.0	0.0	0.0	0.0	0.0	1,829
239	有機スズ化合物	0.0	0.0	0.0	0.0	0.0	21
240	スチレン	21,191	0.0	0.0	0.0	0.0	0.0
243	ダイオキシン類	0.0006	0.0	0.0	0.0	0.0	0.011
277	トリエチルアミン	0.0	0.0	0.0	0.0	0.0	0.0
296	1,2,4-トリメチルベンゼン	7,848	0.0	0.0	0.0	0.0	2,600
297	1,3,5-トリメチルベンゼン	2,149	0.0	0.0	0.0	0.0	0.0
300	トルエン	104,591	0.0	0.0	0.0	0.0	19,247
302	ナフタレン	1,930	0.0	0.0	0.0	0.0	0.0
305	鉛化合物	5.2	0.0	0.0	0.0	0.0	965
308	ニッケル	1.5	0.0	0.0	0.0	0.0	395
349	フェノール	0.0	0.0	0.0	0.0	0.0	0.0
354	フタル酸ジーノルマルーブチル	0.0	0.0	0.0	0.0	0.0	48
392	ノルマル-ヘキサン	0.0	0.0	0.0	0.0	0.0	0.0
400	ベンゼン	2.2	0.0	0.0	0.0	0.0	0.0
405	ほう素化合物	0.0	0.0	0.0	0.0	0.0	1.7
411	ホルムアルデヒド	292	0.0	0.0	0.0	0.0	0.0
412	マンガン及びその化合物	0.0	0.0	0.0	0.0	0.0	14,050
438	メチルナフタレン	11	0.0	0.0	0.0	0.0	0.0
448	メチレンビス (4,1-フェニレン) =ジイソシアネート	0.0	0.0	0.0	0.0	0.0	0.0
453	モリブデン及びその化合物	0.0	0.0	0.0	0.0	0.0	0.0
	合計	383,962	40	0.0	0.0	20	114,946

※集計対象: [本体生産拠点] + [グループ会社国内生産拠点] : VOC (揮発性有機化合物)

2011年度 物質別排出移動量の割合(国内生産拠点データ)

地下水管理状況 🔎

過去に有機塩素系化合物を使用していた拠点における地下水測定結果は、以下のとおりです。

拠点名	物質名	地下水測定値	環境基準値
筑波工場	トリクロロエチレン	不検出(0.0001mg/l未満)	0.03mg/l以下
宇都宮工場	トリクロロエチレン	不検出(0.001mg/l未満)	0.03mg/l以下

環境会計 (国内拠点データ)

環境会計は、事業活動における環境保全のためのコストと、その活動により得られた効果を、可能な限り定量的に把握し分析するこ とにより、事業活動に反映するとともに、社内外関係者へ情報開示し、クボタグループの環境保全に対する取り組み状況を理解して いただくためのものです。

環境保全コスト

環境保全に関する投資額は14.1億円となり、前年度より6.7億円増加しました。費用額は82.0億円となり、前年度より 2.0億円増加しました。研究開発にかかわる費用額は52.5億円で全体の約64%を占めています。

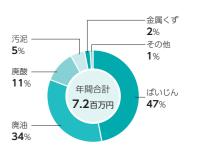
	八业工	>+>P21//27.+++	2010)年度	2011	年度		
	分類	主な取り組み内容	投資額	費用額	投資額	費用額		
事業工	リア内コスト		450	1,409	654	1,423		
	地域環境保全コスト	大気・水質・土壌・騒音・振動など防止のためのコスト	374	492	273	524		
	地球環境保全コスト	地球温暖化防止などのためのコスト	64	189	287	171		
	資源循環コスト	廃棄物の削減・減量・リサイクル化のためのコスト	12	728	94	728		
上・下	流コスト	製品の回収・再商品化のためのコスト	0	19	0	21		
管理活	動コスト	環境管理人件費、ISO整備・運用、環境情報発信コスト	26	1,238	12	1,304		
研究開	発コスト	製品環境負荷低減・環境保全装置などの研究開発コスト	264	5,127	743	5,246		
社会活	動コスト	地域清掃活動、環境関係団体加盟費用・寄付など	0	1	0	1		
環境損	傷対応コスト	拠出金・賦課金など	0	204	0	203		
	合計		740	7,998	1,409	8,198		
当該期	月間の設備投資額(土地含む)(り総額(連結データ)				31,100		
当該斯	間の研究開発費の総額				27.90			

環境保全効果 🧷 事業活動に投入する資源に関する効果では、水の使用量が一部事業所の設備故障により増加しました。事業活動から排 出する環境負荷および廃棄物に関する効果では、SOx排出量が一部事業所の生産量減少などにより減少、また廃棄物排出 量は、国内グループ生産量の増加、並びに震災の影響で発生したコンクリートガラの計上などにより増加しました。

効果の内容	項目	2010年度	2011年度	増減量	対前年度比(%)
事業活動に投入する	エネルギー使用量[輸送燃料を除く](熱量換算TJ)	7,200	7,270	70	101
事業活動に投入する 資源に関する効果 エネルギー使用量[輸送燃料: 水の使用量(万m³) CO2排出量(エネルギー起源 SOX排出量(t) NOX排出量(t) (ばいじん排出量(t)	水の使用量(万m³)	379	394	15	104
	CO2排出量[エネルギー起源](万t)	36.9	37.3	0.4	101
	SOx排出量(t)	5.1	2.5	-2.6	49
事業活動に投入する 資源に関する効果 エネルギー使用量 水の使用量(万m³ CO2排出量(エネ) SOX排出量(t) NOX排出量(t) 原棄物に関する効果 ばいじん排出量(t) PRTR対象物質排 廃棄物排出量(干t)	NOx排出量(t)	61.7	56.1	-5.6	91
	ばいじん排出量(t)	4.4	3.8	-0.6	86
	PRTR対象物質排出移動量(t)	509	499	-10	98
	廃棄物排出量(千t)	60	64	4	107
	廃棄物埋立量(千t)	0.9	0.9	0	100

経済効果 環境保全活動に伴う経済効果は 16.4億円となりました。

(単位:百万円)


分類	内容	年間効果
タエフルギー対等	キュポラでの燃焼効率改善、エネルギーのムダ発見と削減など	623
省エネルギー対策	物流拠点の見直し、コンテナを共用する「共同ラウンド輸送」など	21
ゼロ・エミッション化対策	廃棄物の社内減量化、再利用・再資源化による排出量削減	7.2
ピロ・エミックョンル対象	有価物の売却	985
合計		1,636

〈環境会計の集計方法〉

- 1)期間は2011年4月1日から2012年3月31日です。
- 2) 環境会計の集計範囲はグループ国内拠点です。
- 3) 環境省環境会計ガイドライン(2005年版)を参考に集計しています。 4) 費用額には減価償却費を含んでいます。
- 減価償却費は当社の財務会計と同一の基準で計算し、1998年以降に取得した資産を計上しています。
- 管理活動コスト・研究開発コストには人件費を含んでいます。
- 資源循環コストには施工現場における建設廃棄物処理コストを含んでいません。
- 研究開発コストは、環境に寄与する部分を按分により計算しています。
- 5)経済効果は集計可能なもののみを計上し、推定に基づく見なし効果は計上していません。

ゼロ・エミッションによるコスト低減効果(国内拠点データ)

廃棄物の再利用、再資源化による排出量の減少により、コ スト低減効果を生み出しています。2011年度は、一部事業所 の生産量減少によるばいじんの減少、メンテナンス方法の効 率化による廃油の削減などにより、前年度比で年間7.2百万 円の廃棄物処理コスト低減効果がありました。

48-⑦ KUBOTA REPORT 2012 KUBOTA REPORT 2012 48-®

CO2関連換算係数

CO2排出量の算定について

熱量換算係数

● 1990年度 燃料: 「エネルギー源別発熱量表 (2001.3.30改訂)」(資源エネルギー庁)の係数を使用

電気: 「エネルギー使用の合理化に関する法律施行規則(2002.12.27改訂)」(経産省)から、9.83MJ/kWhを使用

● 2007~2008年度 「エネルギー使用の合理化に関する法律施行規則(2006.3.29改訂)」(経産省)の係数を使用

2009~2011年度 「エネルギー使用の合理化に関する法律施行規則(2009.3.31改訂)」(経産省)の係数を使用

CO2排出係数

● 1990年度 燃料:「二酸化炭素排出量調査報告書(1992)」(環境庁)の係数を使用し、

二酸化炭素換算量(t-CO₂)=炭素換算量(t-C)×3.664として算出

●2007年度 燃料: 「特定排出者の事業活動に伴う温室効果ガスの排出量の算定に関する省令

> (平成18年3月 経済産業省、環境省令第3号)」の係数を使用 電気:国内は上記省令の係数及び電気事業者別排出係数を使用

海外は「各国における発電部門CO2排出原単位の推計調査報告書-Ver.3 (2006年6月)」

(日本電機工業会)の係数を使用

燃料: 「温室効果ガス排出算定・報告マニュアル (Ver.2.4)」(平成21年3月) (環境省・経産省) の係数を使用 ● 2008年度

電気:国内は上記係数及び電気事業者が公表する排出係数を使用

海外は「各国における発電部門CO2排出原単位の推計調査報告書-Ver.3 (2006年6月)」

(日本電機工業会)の係数を使用

● 2009~2011年度 燃料: 「算定・報告・公表制度における算定方法・排出係数一覧」 (平成22年3月改正後) (環境省・経産省)の係数を使用

電気:国内は上記係数及び電気事業者が公表する実排出係数(クレジット反映前)を使用

海外はGHGプロトコル (The Greenhouse Gas Protocol Initiative) 公表の各国排出係数を使用

CO2排出量の集計対象範囲

● 1990年度はクボタ本体の生産拠点のみですが、2004年度以降は非生産拠点及びグループ会社を集計範囲に加え、 その対象拠点数を拡大しています。2009年度以降はクボタ本体およびすべての連結子会社を対象としています。

● [CSR報告書2008]より、2003年12月に分社独立した住宅建材部門のCO2排出量を除いており、 その結果、1990年度のCO2排出量が過去に開示した値よりも小さくなっています。

● また、2006年度以降は国内のエネルギー起源CO2以外の温室効果ガスを新たに算定対象に加え、2011年度以降は 集計対象範囲を海外生産拠点にまで拡大しています。

※温室効果ガスのうち、HFC、PFC、SF6の排出量は、2007年以降1月から12月のデータです。

物流におけるエネルギー投入量・CO2排出量の算定について

トラック輸送の燃料・CO2排出量

● 2007年度 2007年度「交通関係エネルギー要覧 平成19年版」(国交省)の

「1トンの荷物を1km運ぶのに消費するエネルギー(2005年度)」の数値を使用して算出

● 2008~2011年度 「温室効果ガス排出算定・報告マニュアル(Ver.2.4)」(平成21年3月)(環境省・経産省)トンキロ法による。

輸送燃料=輸送トンキロ×燃料使用量原単位×単位発熱量

CO2排出量=輸送燃料×CO2排出係数×44÷12

トラック輸送以外の燃料・CO2排出量

□ [温室効果ガス排出算定・報告マニュアル(Ver.3.2)](平成23年4月)(環境省・経産省)トンキロ法による。 輸送燃料=輸送トンキロ×燃料使用量原単位×単位発熱量 CO2排出量=輸送トンキロ×輸送機関別の輸送トンキロ当たりCO2排出量

※物流CO2排出量の集計対象範囲はクボタ本体と国内の生産系連結子会社

『KUBOTA REPORT 2012』環境パフォーマンス指標算定基準

対象期間 2011年4月1日~2012年3月31日(海外データ:2011年1月1日~2011年12月31日)

対象組織 クボタ本体および日本国内の連結子会社65社および海外の連結子会社85社

**ただし、クパンランド社など、2012年1月~3月に連結子会社となった海外の会社については、集計対象期間外のため、2011年度実績データに含んでいません。

算定基準 「環境報告ガイドライン2007年版」(環境省)を参考にしています。具体的な算定方法は下表を参照してください。

	環境パフォーマンス指標	単位	- 版] (環現自) を参考にしています。 具体的は昇正方法は下衣を参照してください。 算定方法
	総エネルギー投入量	TJ	(購入電力量+太陽光発電量)×単位発熱量*1+Σ[各燃料使用量×各燃料の単位発熱量*1] (輸送燃料を含む)
	水資源投入量	m ³	上水、工業用水、地下水の使用量の合計(水資源投入量=水使用量)
I N	PRTR法対象物質取扱量	t	PRTR法に規定される第1種指定化学物質のうち、各拠点での年間取扱量が1トン以上(特定第1種指定化学物質は0.5トン以上)の物質の取扱量合計値。算定対象組織はグループ国内生産拠点。
N P U T	化学物質取扱量 (海外拠点)	t	・Toxics Release Inventory (TRI) Program, US EPA、・The European Pollutant Emission Register (EPER)、・The European Pollutant Release and Transfer Register (E-PRTR)、・Reporting to the National Pollutant Release Inventory (Canada)などの法規制の適用を受ける拠点の化学物質取扱量合計値、およびその他の拠点におけるトルエン、エチルベンゼン、キシレンの年間取扱量が1トン以上の物質の取扱量合計値。算定対象組織はグループ海外生産拠点。
	SOx排出量	t	燃料使用量(kg)×燃料中の硫黄含有率(重量%)÷100×64÷32×[(1-脱硫効率)÷100]×10·3、 または時間当たりSO×排出量(m³N/h)×施設の年間稼働時間(h)×64÷22.4×10·3 算定対象は、2009年度まではグループ国内拠点における大気汚染防止法ばい煙発生施設。2010年度以降はグループ国内・ 海外拠点における法規制の適用を受ける施設。
	NOx排出量	t	NOx濃度 (ppm)×10-6×時間当たり排出ガス量 (m³N/h)×施設の年間稼働時間 (h)×46÷22.4×10-3 算定対象は、2009年度まではグループ国内拠点における大気汚染防止法ばい煙発生施設。2010年度以降はグループ国内・ 海外拠点における法規制の適用を受ける施設。
OUTPUT	ばいじん排出量	t	ばいじん濃度(g/m³N)×時間当たり排出ガス量(m³N/h)×施設の年間稼働時間(h)×10-6 算定対象は、2009年度まではグループ国内拠点における大気汚染防止法ばい煙発生施設。2010年度以降はグループ国内・ 海外拠点における法規制の適用を受ける施設。
P U T	化学物質排出量 (海外拠点)	t	・Toxics Release Inventory (TRI) Program, US EPA、・The European Pollutant Emission Register (EPER)、・The European Pollutant Release and Transfer Register (E-PRTR)、・Reporting to the National Pollutant Release Inventory (Canada)などの法規制の適用を受ける拠点の化学物質排出量合計値、およびその他の拠点におけるトルエン、エチルベンゼン、キシレンの年間取扱量が1トン以上の物質の取扱量合計値。算定対象組織はグループ海外生産拠点。
	VOC排出量(海外拠点)	t	グループ海外拠点におけるトルエン、エチルベンゼン、キシレンの年間取扱量が1トン以上の物質の取扱量合計値。
	排水量(公共用水域、下水道)	m³	公共用水域または下水道への排水量。雨水・湧水を含む。 算定対象組織は2007年度まではグループ国内拠点、2008年度以降はグループ海外拠点を含む
	COD排出量、窒素排出量、 りん排出量	t	CODまたは窒素またはりん濃度 (mg/l) ×公共用水域への排水量 (mi) ×10 ⁻⁶ 2008年度までは国内における総量規制対象拠点からの総排出量。2009・2010年度は、グループ海外拠点データを含む。 (りんは 2010 年度のみ。)2011年度より、国内外の公共用水域に排水している拠点のうち、総量規制対象拠点からの排出量。
	CO2排出量	t-CO2	購入電力量×CO2排出係数 *1 + Σ [各燃料使用量×各燃料の単位発熱量 *1 *と燃料のCO2排出係数 *1] +非エネルギー起源CO2排出量 *2 +CO2以外の温室効果ガス排出量 *2
地球	CO2排出原単位(グループ全体)	%	CO2排出原単位=グループ全体のCO2排出量・連結売上高 各年度のCO2排出原単位+2008年度のCO2排出原単位×100(%)(冊子P43グラフ内の数値)
地球温暖化の防止	CO2排出原単位(本体生産拠点)	%	CO2排出原単位=本体生産拠点のCO2排出量÷単体売上高 各年度のCO2排出原単位÷1990年度のCO2排出原単位×100(%)(冊子P43グラフ内の数値)
1L の	貨物輸送量	トンキロ	Σ[輸送ごとの輸送量(t)×輸送距離(km)]
防止	物流CO2排出量	t-CO2	「CO2関連換算係数」に掲載のとおり。算定対象組織はクボタ本体と国内の生産系連結子会社。
	物流CO2排出原単位	%	物流CO2排出量÷連結売上高 各年度のCO2排出原単位÷2008年度のCO2排出原単位×100(%)(冊子P43グラフ内の数値)
	廃棄物等排出量	t	有価物売却量+廃棄物排出量
	廃棄物排出量	t	産業廃棄物排出量+事業系一般廃棄物排出量
	廃棄物排出原単位	%	廃棄物排出原単位=廃棄物排出量÷連結売上高 各年度の廃棄物排出原単位÷2008年度の廃棄物排出原単位×100(%) (冊子P44グラフ内の数値)
	廃棄物埋立量	t	直接埋立量+中間処理後最終埋立量
循環型社会	埋立比率	%	廃棄物埋立量÷廃棄物等排出量×100(%) 算定対象組織は2008年度まではグループ国内拠点、2009年度以降はグループ海外拠点を含む。
型社	ゼロ・エミッション達成事業所数比率	%	ゼロ・エミッション(埋立比率が0.5%以下)を達成したとクボタ環境管理部が認定した事業所数÷国内外の生産事業所数×100(%)
$\bar{\sigma}$	再資源化量	t	外部直接再資源化量+外部中間処理後再資源化量 再資源化量には外部中間処理減量化量(脱水量・単純焼却量・熱回収を伴う焼却量)を含まない。
形成	再資源化率(減量化量除く)	%	(有価物売却量+再資源化量)÷(廃棄物等排出量-外部中間処理減量化量)×100(%)
13%	建設廃棄物等排出量	t	建設廃棄物排出量(特定建設資材廃棄物以外の工事廃棄物含む)+建設工事に伴って発生した有価物売却量
	建設廃棄物再資源化率(特定建設資材)建設廃棄物再資源化率(全)	%	建設廃棄物再資源化率(特定建設資材):建設リサイクル法で規定される特定建設資材廃棄物の再資源化率 建設廃棄物再資源化率(全):特定建設資材廃棄物以外の工事廃棄物を含む建設廃棄物の再資源化率 再資源化率=[有価物売却量+再資源化量+減量化量(熱回収)]÷建設廃棄物排出量(有価物売却量含む)×100(%)
	水使用原単位	%	水使用原単位=水使用量÷連結売上高 各年度の水使用原単位÷2008年度の水使用原単位×100(%)(冊子p44グラフ内の数値)
化学物質の管理	PRTR法対象物質排出·移動量	t	日本長の小使用原単位・2000年度の小使用原単位 *100(あ/ [[l]] 日本 タ ファラの数値) 「特定化学物質の環境への排出量の把握等及び管理の改善の促進に関する法律」(以下、PRTR法)に規定される第1種指定化学物質のうち、各拠点での年間取扱量が1トン以上(特定第1種指定化学物質は0.5トン以上)の物質の排出量・移動量の合計・・排出量=大気への排出量+公共用水域への排出量+土壌への排出量+拠点内埋立量・移動量=下水道への移動量+廃棄物としての拠点分移動量 ・移動量=下水道への移動量+廃棄物としての拠点分移動量 物質ごとの排出量・移動量の算定方法は「PRTR排出量等算出マニュアル第4.1版 平成23年3月」(環境省・経済産業省)「鉄鋼薬におけるPRTR排出量等算出マニュアル第10版 平成23年3月」(日本鉄鋼連盟)による。 算定対象組織はブループ国内生産拠点。
理	PRTR法対象物質排出移動原単位	%	排出移動原単位=PRTR法対象物質排出移動量÷連結売上高 各年度の排出移動原単位÷2008年度の排出移動原単位×100(%)(冊子P45グラフ内の数値)
	環境効率指標(CO ₂)	百万円/t-CO ₂	連結売上高÷グループ全体のCO2排出量
7	環境効率指標(廃棄物)	百万円/百kg	連結売上高÷グループ全体の廃棄物排出量
その他	環境効率指標(化学物質)	百万円/kg	連結売上高÷グループ国内生産拠点のPRTR法対象物質排出移動量 事務用品(紙類、文具類等)のグリーン品の購入金額÷グリーン購入対象品目の総購入金額×100(%)
TE.	グリーン購入金額比率	% m³	算定対象組織はグループ国内拠点、クボタグループが運用している事務用品購入サイトを通じて購入したもの。
xx 1	水リサイクル量 「COo関連機管係数1/048 @)に提起のよ	m ³ おい ※2 管守	自社の排水処理設備で浄化され、再使用された水量(冷却水の循環使用量は含まない)。 に方法は、「事業者からの温室効果ガス排出量算定方法ガイドライン」(環境省)による。

^{※1「}CO2関連換算係数1(p48-9)に掲載のとおり。※2 算定方法は、「事業者からの温室効果ガス排出量算定方法ガイドライン1(環境省)による。

48-9 KUBOTA REPORT 2012 KUBOTA REPORT 2012 48-10

生産拠点データ(2011年度実績)

クボタ国内生産拠点データ

IJ	目	単位	阪神工	場(武庫川)	阪神コ	C場(尼崎)	京葉	其工場(船橋)	京葉工	昜(市川)	枚方	製造所	恩加島事	業センター	堺製	造所	堺臨氵	海工場	宇都宮	工場	筑波	工場	久宝寺事業	モンター	竜ヶ崎	 埼工場	滋賀	賀工場
NPUT																												
			使用量	熱量換算GJ	使用量	熱量換算GJ	使用量	熱量換算の	iJ 使用量	熱量換算GJ	使用量	熱量換算GJ	使用量	熱量換算GJ	使用量	熱量換算GJ	使用量	熱量換算GJ	使用量	熱量換算GJ	使用量	熱量換算GJ	使用量	熱量換算GJ	使用量	熱量換算GJ	使用量	熱量換算
<u> </u>	化石燃料	原油換算kQ	15,76	1 610,907	5,490	212,781	21,4	40 830,99	7 60	2,311	5,304	205,593	5,82	225,674	3,951	153,134	2,819	109,270	1,540	59,698	5,101	197,700	224	8,698	228	8,838	663	3 25,6
マルギー	購入電力	MWh	38,46	0 376,799	32,311	322,145	44,6	28 433,92	4,295	42,816	44,299	433,549	42,403	411,996	34,131	332,969	16,678	162,726	6,399	63,121	43,163	420,980	2,333	22,902	3,042	30,333	2,552	2 25,
	合計	原油換算kQ	25,48	3 987,706	13,801	534,927	32,6	35 1,264,92	5 1,164	45,128	16,490	639,142	16,45	637,669	12,541	486,103	7,018	271,997	3,169	122,819	15,962	618,680	815	31,600	1,011	39,171	1,320	0 51,
使用量		万m³		72.8	2	21.5		117.3	1	.0	18	3.7		9.7	1.	3.0	5	5.0	26.	.0	20).2	1.	.3	1	.1		9.8
ITPUT																												
2排出量	エネルギー起源CO ₂	t-CO2	63	3,285	20),676		89,108	1,7	757	24,	449	34	1,857	19,	462	12,	084	5,77	74	27,	522	1,2	07	1,5	589	2	2,075
- u.b-	廃棄物排出量	t	1(0,940	4	,464		18,633	2	79	3,7	728	16	,250	1,1	72	70	09	33	8	2,4	31	8	8	1	10	3	334
物	再資源化率	%	Ç	99.0	9	99.9		99.8	99	9.9	99	9.4	1	0.00	99	9.8	10	0.0	98.	.7	99	0.8	98	3.1	99	9.5	ç	98.0
	主要ばい煙乳	発生施設	· · · · · · · · · · · · · · · · · · ·	容解炉	Jt]熱炉		溶解炉	-	_	םל לו	熱炉	/ -	解炉	10,		-	_	ボイラ		ボイ	-	_	-	ボイ			イラー
		単位	規制内容規	見制値 測定値	規制内容規	制値 測定値	規制内容	規制値 測定値	規制内容 規制	制値 測定値	規制内容規	制値 測定値	規制内容 規	制値 測定値	規制内容 規制	制値 測定値	規制内容規制	制値 測定値	規制内容規制	値 測定値	規制内容 規制	値 測定値	規制内容規制	値 測定値	規制内容規制	制値 測定値	規制内容規	制值 測
		制・K値規制 にm ³ N/h	K値 規制	0.22 0.002		分ゼロの ガス使用	総量 規制	19.3 0.0	3			分ゼロの ガス使用	総量	0.175	59 0.175 総量 1.477 0.129					ゼロの ス使用	K値 規制 17.5 C				※硫黄ź 都市力	ナゼロの ゴス使用		も分ゼロの カガス使用
dガス		制:m³N/h, 規制:ppm	総量 2	24.32 4.13	総量規制	2.24 0.406	総量規制	41.4 6.	3 ばい煙発	生施設なし	総量 9.			2.4 0.519	総量 規制 1.5	535 0.484	ばい煙発	生施設なし	濃度 規制 15	50 25	濃度 規制 230 100		ばい煙発生施設なし		濃度 , 規制	230 52	濃度 規制	180
		g/m³N	濃度 規制	0.1 0.0014	濃度規制	0.1 0.0011	濃度規制	0.1 0.00	4		濃度 規制	0.1 0.008	濃度規制	0.05 0.02	濃度	濃度 規制 0.1 0.025		-		0.1 0.001	1 濃度 0.25 (濃度 規制	0.2 0.01未満	_	_ .
量規制につ	 いては、工場単位の規	見制値・協定値、		 ※K値規制・濃度規		 は、主要な施設の規		 び測定値(最大値)			Weiled		Meiled		N/CIP3				規制		החוזהל				ניווטעל			
			規制値	測定値	規制値	測定値	規制値	1 測定値	規制値	測定値	規制値	測定値	規制値	測定値	規制値	測定値	規制値	測定値	規制値	測定値	規制値	測定値	規制値	測定値	規制値	測定値	規制値	測定
	рН	最小値,最大値	5.8~8.6		_	_	5.0~9.		5.0~9.0	6.4,7.5	5.8~8.6	7.3,7.5	_	_	_	_	5.8~8.6	6.0,7.1	5.8~8.6	7.1,7.8	5.8~8.6	7.4,7.7	_	_	_	_	6.0~8.5	
	BOD	mg/l	30	5	-	_	_	_	60	-	25	3.1	-	-	-	_	30	7.3	25	10.7	20	4.6	_	_	-	-	30	1.5
	COD	mg/l	20	8	_	_	20	2.1	60	15.2	25	3.4	_	_	_	_	30	16.2	-	_	20	9	_	_	-	_	30	2.8
公共用	窒素	mg/l	120	0.2	-	-	20	2.73	70	22.7	120	6.0	-	-	_	_	120	27.4	-	-	60	14	-	_		-	12	0.9
水域	りん	mg/l	16	6.2	_	_	2	0.04	7	2.4	16	0.36	-		-	_	16	5.06	-	-	8	1.6	_	-		-	1.2	NE
	六価クロム	mg/l	0.35	ND	_	-	0.05		- 0.1		0.05	ND 0.013	_		_	_	0.5	ND	0.1	-	0.5	ND	_	_		_	0.05	NE
Κ	COD総量規制値	mg/ℓ kg/⊟	0.1 97.44	ND 14.4	_		0.1 110.5	ND 5 14.90	0.1	0.22	0.01 38.0	0.013 2.35	_		_		0.1 2.13	ND 0.84	0.1	_	0.1	ND -				_	0.1	NI —
	N総量規制値	kg/⊟	40.51	15.7	_	+ -	114.7		2.865	0.22	38.3	2.33		+ -	_		8.53	0.8	_			_		_		_	_	_
	P総量規制値	kg/⊟	1.424	0.5	_	 	11.65		0.391	0.19	4.4	0.19	_	 	_		1.14	0.04	_			_	_			_	_	
	pH	最小値,最大値	5.7~8.7		5.7~8.7		- 11.03	0.00	0.591	0.019	4.4	0.19	5.7~8.7	6.9,7.3	5.7~8.7	7.0,7.1	-	0.04	_			_	5.7~8.7	6.8,7.6	5~9	6.6,6.7	_	
		₩X.1 .IE*#X\/ IE					_	_	_	_	_	_	600	50	300	100	_	_	_	_	_	_	300	11	600	120	_	
		mg/0.	300	1 10 1	3()()	1 54										1 100												1
下水道	BOD	mg/l mg/l	300	10	300	54	_		_	_	_	_	_	_	_	270	_	_	_	_	_	_	_	_	600	_	_	_

PRTR集計結果 (単位:kg/年)

		The		排出量			移重	量
事業所名称	物質名称	政令 番号	大気	公共用 水域	土壌	自社 埋立	下水道	場外 移動
	エチルベンゼン	53	5,355	0.0	0.0	0.0	0.0	0.0
	キシレン	80	7,363	0.0	0.0	0.0	0.0	0.0
	トリエチルアミン	277	0.0	0.0	0.0	0.0	0.0	0.0
阪神工場	1,2,4-トリメチルベンゼン	296	2,367	0.0	0.0	0.0	0.0	0.0
(武庫川)	トルエン	300	15,257	0.0	0.0	0.0	0.0	0.0
	ニッケル	308	0.0	0.0	0.0	0.0	0.0	194
	フェノール	349	0.0	0.0	0.0	0.0	0.0	0.0
	メチレンピス (4,1ーフェニレン) =ジイソシアネート	448	0.0	0.0	0.0	0.0	0.0	0.0
	エチルベンゼン	53	10,838	0.0	0.0	0.0	0.0	8.0
阪神工場	キシレン	80	27,740	0.0	0.0	0.0	0.0	11
(丸島)	トルエン	300	26,098	0.0	0.0	0.0	0.0	199
	ニッケル	308	0.0	0.0	0.0	0.0	0.0	157
	クロム及び三価クロム化合物	87	0.0	0.0	0.0	0.0	0.0	386
75-44-7-18	トルエン	300	1,882	0.0	0.0	0.0	0.0	0.0
阪神工場 (尼崎)	ニッケル	308	1.5	0.0	0.0	0.0	0.0	0.4
(,)	マンガン及びその化合物	大気 公共用 土壌 自社 下水道 複数 大気 公共用 大気 公共用 大気 公共用 大気 大気 大気 技術 大成 単立 下水道 複数 である。 大気 大気 大気 大気 大気 大気 大気 大	6,893					
	モリブデン及びその化合物	453	0.0	0.0	0.0	0.0	0.0	0.0

		Th 🛆		排出量			移動	動量
事業所名称	物質名称	番号	大気	大坂 大田 土壌 自社 下3 64 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	下水道	場外 移動		
	エチルベンゼン	53	17,564	0.0	0.0	0.0	0.0	347
	キシレン	80	28,148	0.0	0.0	0.0	0.0	532
	トリエチルアミン	277	0.0	0.0	0.0	0.0	0.0	0.0
京葉工場	1,2,4-トリメチルベンゼン	296	2,255	0.0	0.0	0.0	0.0	10
(船橋)	トルエン	300	45,307	0.0	0.0	0.0	0.0	631
	ニッケル	物質名称 数令 大気 公共用 大塚 上塚 自社 下水域 上塚 理立 下水域 上塚 理立 下水域 上塚 理立 下水域 上塚 世立 下水域 上塚 世立 下水域 上坂 上坂 上坂 上坂 上坂 上坂 上坂 上	0.0	29				
	フェノール	349	0.0	0.0	0.0	0.0	0.0	0.0
	マンガン及びその化合物	412	0.0	0.0	0.0	0.0	0.0	32
	メチレンビス (4,1ーフェニレン) =ジイソシアネート	448	0.0	0.0	0.0	0.0	0.0	0.0
÷***	エチルベンゼン	53	6,478	0.0	0.0	0.0	0.0	132
京葉工場 (流通加工センター)	キシレン	80	23,052	0.0	0.0	0.0	0.0	470
(Mixed CV)	トルエン	300	7,703	0.0	0.0	0.0	0.0	157
京葉工場(市川)	マンガン及びその化合物	412	0.0	0.0	0.0	0.0	0.0	0.0
	エチルベンゼン	53	955	0.0	0.0	0.0	0.0	19,435
	キシレン	80	1,773	0.0	0.0	0.0	0.0	29,230
	クロム及び三価クロム化合物	87	0.0	0.0	0.0	0.0	0.0	9,392
	コバルト及びその化合物	132	0.0	0.0	0.0	0.0	0.0	3.0
枚方製造所	1,2,4-トリメチルベンゼン	296	113	0.0	0.0	0.0	0.0	2,585
	トルエン	300	1,434	0.0	0.0	0.0	0.0	16,977
	ニッケル	308	0.0	0.0	0.0	0.0	0.0	14
	ほう素化合物	405	0.0	0.0	0.0	0.0	0.0	1.7
	マンガン及びその化合物	412	0.0	0.0	0.0	0.0	0.0	5,455
	モリブデン及びその化合物	453	0.0	0.0	0.0	0.0	0.0	0.0

		The		排出重			移里	ル里
事業所名称	物質名称	政令 番号	大気	公共用 水域	土壌	自社 埋立	下水道	場外 移動
	エチルベンゼン	53	29	0.0	0.0	0.0	0.0	73
	キシレン	80	237	0.0	0.0	0.0	0.0	591
	クロム及び三価クロム化合物	87	0.0	0.0	0.0	0.0	0.0	1,018
	トリエチルアミン	277	0.0	0.0	0.0	0.0	0.0	0.0
恩加島	1,2,4-トリメチルベンゼン	296	2,864	0.0	0.0	0.0	0.0	0.0
事業センター	1,3,5-トリメチルベンゼン	297	859	0.0	0.0	0.0	0.0	0.0
	ニッケル	308	0.0	大坂 大坂 土坂 自社 下水道 塚	0.0			
	フェノール	349	大気 大域 土壌 埋立 下水道 移動	0.0				
	ホルムアルデヒド	411	292	0.0	0.0	0.0	0.0	0.0
	マンガン及びその化合物	412	0.0	0.0	0.0	0.0	0.0	1,670
	メチレンビス (4,1-フェニレン) =ジイソシアネート	448	0.0	0.0	0.0	0.0	0.0	0.0
	亜鉛の水溶性化合物	1	0.0	0.0	0.0	0.0	20	0.0
	エチルベンゼン	53	2,222	0.0	0.0	0.0	0.0	106
堺製造所	キシレン	80	3,343	0.0	0.0	0.0	0.0	282
	1,2,4-トリメチルベンゼン	296	249	0.0	0.0	理立 下水道 利	6.2	
	トルエン	300	1,007	0.0	0.0	0.0	0.0	93
	エチルベンゼン	53	82	0.0	0.0	0.0	0.0	38
	キシレン	80	276	0.0	0.0	0.0	0.0	110
堺臨海工場	トルエン	300	436	0.0	0.0	日社 下水道 場	182	
	ベンゼン	400	2.2	0.0	0.0	0.0	0.0	0.0

		The		排出量			移重	量
事業所名称	物質名称	番号	大気	公共用 水域	土壌	自社 埋立	下水道	場外 移動
	亜鉛の水溶性化合物	1	0.0	9.9	0.0	0.0	0.0	516
	エチルベンゼン	53	9,311	0.0	0.0	0.0	0.0	3,498
	キシレン	80	12,554	0.0	0.0	0.0	0.0	4,685
宇都宮工場	1,2,4-トリメチルベンゼン	296	0.0	0.0	0.0	0.0	0.0	0.0
	トルエン	300	400	0.0	0.0	0.0	0.0	164
	ナフタレン	302	1,930	0.0	0.0	0.0	0.0	0.0
	ノルマル-ヘキサン	392	0.0	0.0	0.0	理立 下が道 移動 では 下が道 移動 では では では では では では では で	0.0	
	亜鉛の水溶性化合物	1	0.0	30	0.0	0.0	0.0	787
	エチルベンゼン	53	38,106	0.0	0.0	0.0	0.0	811
筑波丁場	キシレン	80	40,557	0.0	0.0	0.0	0.0	3,035
3/L/IX_12/70	1,3,5-トリメチルベンゼン	297	1,290	0.0	0.0	0.0	0.0	0.0
	トルエン	300	3,184	0.0	0.0	0.0	0.0	0.0
	メチレンビス (4,1-フェニレン) =ジイソシアネート	448	0.0	0.0	0.0	0.0	0.0	0.0
	エチルベンゼン	53	1,095	0.0	0.0	0.0	0.0	99
竜ヶ崎工場	キシレン	80	1,324	0.0	0.0	0.0	0.0	111
	トルエン	300	813	0.0	0.0	0.0	0.0	516
	スチレン	240	21,191	0.0	0.0	0.0	0.0	0.0
滋賀工場	本部の水溶性化合物 大気 公共用 大壌 自社 現立 日本 大気 公共用 大壌 日本 大坂 公共用 大坂 公共用 大坂 公共用 大塚 公共 大坂 大坂 大坂 大坂 大坂 大坂 大坂 大	0.0	0.0	48				
	メチレンビス (4,1-フェニレン) =ジイソシアネート	448	0.0	0.0	0.0	0.0	下水道 大水道 大水道 大水道 地域 下水道 地域 地域 地域 地域 地域 地域 地域 地	0.0

48-11 KUBOTA REPORT 2012 KUBOTA REPORT 2012 48-®

クボタグループ生産拠点データ_(2011年度実績)

クボタグループ国内生産拠点データ

頂	i l	単位	クボタシ-	-アイ(堺)	クボタシーフ	アイ(小田原)	クボタシー	アイ(栃木)	クボタ空	調(栃木)	クボタ	7精機	日本プラス (本社		九州クオ	でタ化成
INPUT																
			使用量	熱量換算GJ	使用量	熱量換算GJ	使用量	熱量換算GJ	使用量	熱量換算GJ	使用量	熱量換算GJ	使用量	熱量換算GJ	使用量	熱量換算GJ
11 12°	化石燃料	原油換算kQ	64	2,499	121	4,684	200	7,751	257	9,949	733	28,411	45	1,752	2	70
エネルギー	購入電力	MWh	10,852	105,916	28,900	280,030	17,822	172,807	2,244	22,369	12,547	121,896	11,199	107,814	7,293	70,188
	合計	原油換算kQ	2,797	108,416	7,346	284,714	4,658	180,558	834	32,318	3,878	150,307	2,827	109,565	1,813	70,258
水使用量		万m³	1.	.4	6.1		21	1.4	6	.3	1	.9	14.	2	0	.6

OUTPUT

CO2排出量	エネルギー	記源CO2	t-CO2		4,608			11,088	}		7,216			1,341			5,335			5,396		2,	812
	廃棄物排出	ше	+		41			58			258			168			433			21			19
廃棄物	再資源化		%		98.2			100.0			100.0			99.8			100.0			99.2			0.0
	一	+-	70		30.2			100.0			100.0			99.0			100.0			33.Z			70.0
	主要ばい煙発生施設		生施設		_			-		7	ドイラー	-	7	ボイラー	-		_			-			_
		į	単位	規制内容	規制値	測定値	規制内容	規制値	測定値	規制内容	規制値	測定値	規制内容	規制値	測定値	規制内容	規制値	測定値	規制内容	規制値	測定値	規制内容 規	制値 測定
+1111+2-	SOx		制・K値規制 こm³N/h							K値 規制	14.5	0.5	K値 規制	8	0.009未満								
排出ガス	NOx	総量規制 濃度規	引:m³N/h, 見制:ppm	ばい煙	発生施	設なし	ばい煙	■発生施	設なし	濃度 規制	なし	58	濃度 規制	230	20未満	ばい煙	発生施	設なし	ばい煙	発生施設	設なし	ばい煙発	生施設なり
	ばいじん	g/	/m³N							濃度 規制	なし	0.005未満	濃度 規制	0.2	0.005未満								

※総量規制については、工場単位の規制値・協定値、測定値 ※K値規制・濃度規制については、主要な施設の規制値および測定値(最大値)

				規制値	測定値	規制値	測定値	規制値	測定値	規制値	測定値	規制値	測定値	規制値	測定値	規制値	測定値
		рН	最小値,最大値	5.8~8.6	6.4,7.8	5.8~8.6	7.4,7.9	5.8~8.6	7.9,8.3	5.8~8.6	7.3,7.6	-	_	5.8~8.6	6.9,7.4	-	_
		BOD	mg/l	25	2.0	60	3.5	20	8.3	20	4.4	-	_	160	7	-	-
		COD	mg/l	25	5.0	60	6.9	-	-	20	14	-	_	160	ND	-	-
	/\#E	窒素	mg/l	60	42	120	2.5	60	0.7	_	-	-	_	_	-	-	_
	公共用 水域	りん	mg/l	8	5.6	16	0.09	1	ND	-	-	-	_	_	-	-	-
		六価クロム	mg/l	0.5	ND	0.5	ND	0.1	ND	0.1	ND	-	_	-	-	-	-
排水		鉛	mg/l	0.1	0.01	0.1	0.03	0.1	0.03	0.1	ND	-	_	0.1	ND	-	-
		COD総量規制値	kg/⊟	_	_	_	_	_	_	-	-	-	_	_	-	-	_
		N総量規制値	kg/⊟	_	_	_	_	_	_	-	-	-	_	_	-	-	_
		P総量規制値	kg/⊟	_	_	-	_	_	_	-	-	-	_	-	-	-	_
		рН	-	-	_	-	-	_	_	-	-	-	_	-	-	-	-
	下水道	BOD	mg/l	_	_	_	_	_	_	_	-	-	_	_	-	-	_
	一八旦	COD	mg/l	-	-	-	_	-	-	-	-	-	-	_	-	-	-
		SS	mg/l	_	_	_	_	_	_	_	-	-	_	_	-	-	_

※総量規制については、工場単位の規制値・測定値 ※濃度規制については、工場単位の規制値・協定値・測定値(最大値)

PRTR集計結果 (単位:kg/年)

		政令		排出量			移動	量
事業所名称	物質名称	番号	大気	公共用 水域	土壌	自社 埋立	下水道	場外 移動
クボタシーアイ(堺)	鉛化合物	305	0.8	0.0	0.0	0.0	0.0	15
クボタシーアイ	有機スズ化合物	239	0.0	0.0	0.0	0.0	0.0	13
(小田原)	鉛化合物	305	0.0	0.0	0.0	0.0	0.0	142
G.I"G> (有機スズ化合物	239	0.0	0.0	0.0	0.0	0.0	5.4
クボタシーアイ (栃木)	鉛化合物	305	0.0	0.0	0.0	0.0	0.0	770
(10)2714)	メチルナフタレン	438	11	0.0	0.0	0.0	0.0	0.0
クボタ空調	塩化第二鉄	71	0.0	0.0	0.0	0.0	0.0	0.0
(栃木)	メチレンビス (4,1ーフェニレン) =ジイソシアネート	448	0.0	0.0	0.0	0.0	0.0	0.0
クボタ精機	N,N-ジシクロヘキシルアミン	188	0.0	0.0	0.0	0.0	0.0	1,829
日本プラスチック工業	鉛化合物	305	3.2	0.0	0.0	0.0	0.0	5.4
九州クボタ化成	有機スズ化合物	239	0.0	0.0	0.0	0.0	0.0	2.6
プロフ ハ ラ 1 し ル	鉛化合物	305	1.2	0.0	0.0	0.0	0.0	32

化学物質集計結果

単位:kg/年〈Reporting to the National Pollutant Release Inventory (Canada)〉

			排出	出量	移動量
事業所名称	物質名称	Number	大気	その他	場外移動 再資源化
	Chromium (and its compounds)	NA-04	87	0.0	80,801
	Manganese (and its compounds)	NA-09	4.0	0.0	3,794
Kubota Metal	Nickel(and its compounds)	NA-11	77	0.0	72,759
Corporation	Isopropyl Alcohol	67-63-0	188	0.0	12,345
	PM10-Particulate Matter≦10μm	Number 大気 その他 再資 場外 再資 NA-04 87 0.0 80 NA-09 4.0 0.0 3 NA-11 77 0.0 72	0.0		
	PM2.5-Particulate Matter≦2.5μm	NA-M10	336	0.0	0.0

単位:kg/年〈Toxics Release Inventory (TRI) Program (U.S. EPA)〉

		CAS	排出	量	移動量
事業所名称	物質名称	Number	大気	その他	場外移動 再資源化
Kubota Industrial	Chromium	7440-47-3	440-47-3 0.15 0.0	0.0	
Equipment	Manganese	7439-96-5	98	0.0	0.03
Corporation	Nickel	7440-02-0	0.06	0.0	0.0

クボタグループ海外生産拠点データ

項	■		単位	Kub Baumaschi	ota nen GmbH	Kubota Mar America (nufacturing of Corporation	Kubota I Equipment	ndustrial Corporation	The Sian Corporation (n Kubota 'Headquarter)	The Siam Kub (Amata Na	ota Corporation akorn Plant)	The : Meta	Siam Ku Il Techn	bota ology	Kubota l Machinery	Precision (Thailand)
т																0/		
-				使用量	熱量換算GJ	使用量	熱量換算GJ	使用量	熱量換算GJ	使用量	熱量換算GJ	使用量	熱量換算GJ	使用量	a 熱量	₫換算GJ	使用量	熱量換算G
	化石燃料		原油換算kQ	580	22,478	1,395	54,056	1,930	74,812	245	9,508	960	37,216	(93	3,606	4	156
+-	購入電力		MWh	1,846	18,406	22,209	221,419	14,977	149,320	8,919	88,918	7,960	79,362	10,6	18 10	5,860	72	714
	合計		原油換算kQ	1,055	40,884	7,107	275,475	5,783	224,132	2,539	98,426	3,008	116,578	2,82	24 10	9,466	22	871
量			万m³	0.	7	6	5.0	1.	.3	7.	.1	8	.2		3.4		0.	04
PUT																		
計出量	エネルギー	起源CO2	t-CO ₂	2,0	70	18,	862	14,0	021	5,2	249	6,3	398		5,831		4	-8
	廃棄物排	出量	t	22	7	1.3	310	77	73	33	36	3.1	05		2,957		1	0
1			%			,				-					75.0			-
	一面	1半1 小価祭	★/十位電売			#* /			_		_	#*/			電気炉		_	
ŀ	工女!	_								規制内容 規制	訓備 測定値					測定値	規制内容 規制	制値 測定値
出ガス	SOx	総量規制	制·濃度規制	770 P 70	JIE MACIE	※硫黄	分ゼロの	7501131 312 75011	JIE MACIE	7901431 322 79014	JIE MACIE	※硫黄ź	うゼロの	(ppm)	60	2.3	7700731 312 77001	JIE WALLE
	NOx			ばい煙発生	上施設なし	濃度規制	iU 10	ばい煙発生	上施設なし	ばい煙発生	上施設なし	濃度 規制 2	00 65	(ppm)	180	0.89	ばい煙発	生施設なし
	ばいじん	g	/m³N			濃度規制	il –					濃度 規制 0.	.32 0.0032	濃度 規制	0.001	0.0002	48 10 81. - 規制内容 規制 (ぱい煙発生 規制値 	
設:大気	排出ガスに	関する法	規制の適用を	受ける施設														
				規制値	測定値	規制値	測定値	規制値	測定値	規制値	測定値	規制値	測定値	規制値	直源	則定値	規制値	測定値
	рН		-	_	_	-	_	_	_	-	_	_	_	_		-	_	_
	BOD		mg/l	-	-	-	_	_	_	-	-	_	_	-		_	_	-
	COD		mg/l	-	_	-	_	_	-	-	-	_	_	_		-	_	-
公共田			- U	_	-	_	_	_	_	-	_	_	_	_		_		-
火域 上			Ü		_		_			_				_		_		-
		4												_		-		_
-		= 40 to 1 /+																
-																		-
																		_
		川道																_
	1.			0.5~9.0														_
下水道				1,000		900	110.2	250					 					_
				-	-		68.7					_					_	_
	PUT 記量 フ ス 公共 規 、 公 大 気	第入電力 開入電力 日本 日本 日本 日本 日本 日本 日本 日	第入電力	購入電力 MWh 点油換算k@ 万m³ PUT 日本 元本ルギー起源CO2 t-CO2 東棄物排出量 t 再資源化率 % 全要ばい煙発生施設 単位 SOx 総量規制・濃度規制・調を規制・アクト ではいじん g/m³N/h 濃度規制・アクト ではいじん g/m³N/h 濃度規制・アクト ではいじん g/m³N ではいじん g/m²N ではないでは、	(七石燃料 原油換算k	## 化石燃料 原油換算k0 580 22,478 購入電力 MWh 1,846 18,406 合計 原油換算k0 1,055 40,884 万m³ 0.7 PUT F出量 エネルギー起源CO2 t-CO2 2,070 廃棄物排出量 t 227 再資源化率 % 98.3 主要ばい煙発生施設 - 規制内容規制値 測定値 SOX 総量規制・濃度規制・調を規制・m³N/h 濃度規制:ppm ばいじん g/m³N ぱい煙発生施設なし 現制値 測定値 MP	#	#	## 化石燃料 原油換算k0 580 22.478 1.395 54.056 1.930 期入電力 MWVh 1.846 18.406 22.209 221.419 14.977 合計 原油換算k0 1.055 40.884 7.107 275,475 5.783	# 代石燃料 原油換算k2 580 22.478 1.395 54.056 1.930 74.812 期入電力 MWVh 1.846 18.406 22.209 221.419 14.977 149.320 合計 原油換算k2 1.055 40.884 7.107 275.475 5.783 224.132	## 化石燃料 原油換算k 580 22.478 1.395 54.056 1.930 74.812 245	## 他石燃料 原油換算kQ 580 22.478 1.395 54.056 1.930 74.812 245 9.508 購入電力 MWVh 1.846 18.406 22.209 221.419 14.977 149.320 8.919 88.918 合計 原油換算kQ 1.055 40.884 7.107 275.475 5.783 224.132 2.539 98.426 	## 他石燃料 原油換算k	化石燃料 原油換算	Table Reite Re	### 作品解析 原油検算化 580 22.478 1.395 54.056 1.930 74.812 245 9.508 960 37.216 93 37.216	## 代表機料 原油機算kQ 580 22.478 13.95 54.056 1.930 74.812 245 9.508 960 37.216 93 3.606	## 代表機料 原油機構体 580 22.478 1.395 54.056 1.930 74.812 245 9.508 960 37.216 93 3.606 4 4 期入電力 MWWh 1.846 18.406 22.209 221.419 14.977 149.320 8.919 89.918 7.960 79.362 10.618 105.860 72 6.6計 原油機構体 1.055 40.884 7.107 275.475 5.783 224.132 2.539 98.426 3.008 116.578 2.824 109.466 22 72 72 75.78 75 78 3 22.132 2.539 98.426 3.008 116.578 2.824 109.466 22 70 72 75 75 78 78 78 78 78 78 78 78 78 78 78 78 78

~	_		7-12			有限	公司	1.1.avicec	c scindraing	0	orporati	on	Com	pany
INPUT														
				使用量	熱量換算GJ	使用量	熱量換算GJ	使用量	熱量換算G	使用	量熱	量換算GJ	使用量	熱量換算G
	化石燃料		原油換算kQ	265	10,280	970	37,589	326	12,624	2,6	81 10	3,899	2,330	90,324
エネルギー	購入電力		MWh	1,608	16,032	6,962	69,414	3,440	34,294	16,0	59 16	50,113	0	C
	合計		原油換算kQ	679	26,312	2,761	107,003	1,210	46,918	6,8	12 26	54,012	2,330	90,324
水使用量			万m³	2	.9	7	'.8		3.0		3.9		1.	.1
OUTPUT														
CO2排出量	エネルギー	起源CO2	t-CO2	1,8	868	7,2	274	3	250		8,207	,	6,0	63
廃棄物	廃棄物排品	出量	t	ī	5	4	44	2	28		2,981		32	28
用果彻	再資源化	率	%	97	7.6	7:	2.9	9	4.1		78.4		0.	0
	主要	ばい煙発	生施設	-	_	ボイ	′ラー	乾	燥炉		加熱炉	i	_	-
			単位	規制内容 規制	引値 測定値	規制内容 規制	引値 測定値	規制内容 規	制値 測定値	規制内容	規制値	測定値	規制内容 規制	引値 測定値
		/// == 151								Natio extra				

	75473	再資源化率	率 %		97.6		72.9			94.1			78.4			0.0			
排出		主要ばい煙発生施設			_		ボイラー			乾燥炉			加熱炉			_			
			単位		規制内容	規制値	測定値	規制内容	規制値	測定値	規制内容	規制値	測定値	規制内容	規制値	測定値	規制内容	規制値	測定値
	44F111427-7	SOx	総量規制・濃度規制 :m³N/h				(mg/m³)	550	-	(mg/m³)	800	5.312	濃度 規制	なし	_				
	排出ガス	NOx		制:m³N/h, 見制:ppm	ばい煙発生施設なし		(mg/m³)	240	1.6	(mg/m ³)	1000	0.941	濃度 規制	なし	_	ばい煙発生施設な		設なし	
		ばいじん	g	/m³N				濃度 規制	120	-	濃度 規制	0.35	0.0555	濃度 規制	なし	_			

※対象施設・入丸排出ガスに関9 る法規制の適用を受ける施設														
	公共用水域			規制値	測定値	規制値	測定値	規制値	測定値	規制値	測定値	規制値	測定値	
		рН	_	6.0~9.0	7.0	-	_	6.0~9.0	8.43	-	-	-	_	
		BOD	mg/l	100	10.0	_	_	100	350	-	-	-	_	
		COD	mg/l	250	21.2	_	-	250	784	_	-	_	_	
		窒素	mg/l	-	_	-	-	-	-	-	-	-	_	
		りん	mg/l	-	_	-	-	-	-	-	-	-	-	
		六価クロム	mg/l	0.1	0.0001	_	_	0.5	0.002	-	-	-	_	
排水		鉛	mg/l	0.1	0.0050	-	_	0.1	ND	-	-	-	-	
		COD総量規制値	kg/⊟	_	-	_	_	_	-	_	-	_	_	
		N総量規制値	kg/⊟	_	_	_	_	_	_	_	-	_	_	
		P総量規制値	kg/⊟	_	_	_	_	_	-	_	-	-	-	
	下水道	рН	-	_	-	(下水放流)	_	_	_	(下水放流)	-	(下水放流)	_	
		BOD	mg/l	_	_	_	_	_	_	_	-	_	_	*
		COD	mg/l	_	_	_	_	_	_	_	-	-	-	*
		SS	mg/l	_	_	_	-	_	_	_	_	_	_	"

※排水の総量規制については、 工場単位の規制値・測定値 ※排水の濃度規制については、 工場単位の規制値・協定値・測定値(最大値)

48-® KUBOTA REPORT 2012 KUBOTA REPORT 2012 48-14